Home
Class 12
MATHS
Let vec a , vec ba n d vec c be three ...

Let ` vec a , vec ba n d vec c` be three non-coplanar vectors and ` vec p , vec qa n d vec r` the vectors defined by the relation ` vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot` Then the value of the expression `( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r` is a.`0` b. `1` c. `2` d. `3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca , vecb, vec c be three non coplanar vectors , and let vecp , vecq " and " vec r be the vectors defined by the relation vecp = (vecb xx vec c )/([veca vecb vec c ]), vec q = (vec c xx vec a)/([veca vecb vec c ]) " and " vec r = (vec a xx vec b)/([veca vecb vec c ]) Then the value of the expension (vec a + vec b) .vec p + (vecb + vec c) .q + (vec c + vec a) . vec r is equal to

If vec a, vec b, vec c are three non-coplanar vectors and vec p, vec q, vec r are vectors defined by the relations vec p = (vec b xxvec c) / ([vec avec bvec c]), vec q = (vec c xxvec a) / ([vec avec bvec c]), vec r = (vec a xxvec b) / ([vec avec bvec c]) then the value of expression (vec a + vec b) * vec p + (vec b + vec c) * vec q + (vec c + vec a) * vec r is equal to

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a,vec b,vec c be any three non-zero non coplanar vectors and vectors vec p=(vec b xx vec c)/(vec a.vec b xx vec c),vec q=(vec c xx vec a)/(vec a.vec b xx vec c) vec r=(vec a xx vec b)/(veca.vec b xx vec c), then [vec p vec q vec r] equals -

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

Let vec a , vec b ,a n d vec c be vectors forming right-hand traid. Let vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c]),a n d vec r=( vec axx vec b)/([ vec a vec b vec c]),dot If xuuR^+, then x[ vec a vec b vec c]+([ vec p vec q vec r])/x b. x^4[ vec a vec b vec c]^2+([ vec p vec q vec r])/(x^2) has least value =(3/2)^(2//3) c. [ vec p vec q vec r]>0 d. none of these

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these

If vec a,vec b, and vec c are three non-coplanar vectors,then find the value of (vec a*(vec b xxvec c))/(vec b*(vec c xxvec a))+(vec b*(vec c xxvec a))/(vec c*(vec a xxvec b))+(vec c*(vec b xxvec a))/(vec a xxvec c))

Let vec a, vec b and vec c, are non-coplianar vectors such that [(vec a xxvec b) * vec c] = | vec a || vec b || vec c | then

If the vectors vec a, vec b, vec c are coplanar, then the value of | (vec a, vec b, vec c), (vec a * vec a, vec a * vec b, vec a * vec c), (vec b * vec a, vec b * vec b, vecb * vec c) | =