Home
Class 11
MATHS
Let f(x)=int(1)^(x)t(t^(2)-3t+2)dt,1lexl...

Let `f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1lexle4`. Then the range of f (x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1<=x<=3 Then the range of f(x) is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2t)dt,1lexle3 then the maximum value of f(x) is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^2-3t+2)dt,x in [1,3] Then the range of f(x), is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3 then the maximum value of f(x) is

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

Let f(x)=int_(0)^(4)|x^(2)-4x-t|dt,x in(0,4) ,then the range of f(x) is

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then