Home
Class 12
MATHS
If f(0)=1,f(2)=3,f'(2)=5 ,then the value...

If f(0)=1,f(2)=3,f'(2)=5 ,then the value of the definite integral `int_(0)^(1)xf''(2x)dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)-3cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then find the value of the definite integral int_(0)^(1)f(x)dx

Evaluate the definite integrals int_(0)^(1)(2x+3)/(5x^(2)+1)dx

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

The value of the integral int f_(0)^(2)|x^(2)-1|dx is

The value of the definite integral int_(-2008)^(2008)((f'(x)+f'(-x))/((2008)^(x)+1))dx

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

Let f(x) be a continuous function on [0,4] satisfying f(x)f(4-x)=1. The value of the definite integral int_(0)^(4)(1)/(1+f(x))dx equals -

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

If f(0)=1,f(2)=3,f'(2)=5 and f'(0) is finite,then int_(0)^(1)xf''(2x)dx is equal to (A) zero (B) 1(C)2(D) none of these