Home
Class 12
MATHS
If f'(x)=(x-1)(x-2)^(2)(x-3)^(3)(x-4)^(4...

If `f'(x)=(x-1)(x-2)^(2)(x-3)^(3)(x-4)^(4)(x-5)^(5)`, then the number of local minima of `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3) What is the number of point of local minima of the function f(x)?

If f (x)=((x-1) (x-2))/((x-3)(x-4)), then number of local extemas for g (x), where g (x) =f (|x|):

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3). What is the number of points of local minima of the function f(x)? What is the number of points of local maxima of the function f(x)?

If f(x)=((3)/(5))^(x)+((4)/(5))^(x)-1,x inR, then the equation f(x)=0 has :

If f(x)=((3)/(5))^(x)+((4)/(5))^(x)-1,x in R, then the equation f(x)=0 has :

If f (x) =(x+3)/(4x-5) and t =(3+ 5x)/( 4x -1), then f (t) is

If f(x)=3^(x)+4^(x)+5^(x)-6^(x), then f(x)