Home
Class 12
MATHS
If veca, vecb and vecc are unit vectors...

If `veca, vecb and vecc ` are unit vectors then `|veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are unit vectors satisfying |veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then " |2veca+ 5vecb+ 5vecc| is

If veca. Vecb and vecc are unit vectors satisfying |veca -vecb|^(2) +|vecb -vecc| ^(2) |vecc -veca| =9 , " then " |2 veca + 5 vecb + 5 vecc| is equal to

If veca,vecb,vecc are unit vectors satisfying |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=9 then |2veca+5vecb+3vecc| is

If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23vecb)] is equal to

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

Let veca , vecb and vecc be three unit vectors such that |veca - vecb|^2 + |veca - vecc|^2 =8 . Then |veca + 2vecb|^2 + |veca + 2vecc|^2 is equal to ________.

If veca, vecb are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|