Home
Class 12
MATHS
Let f(x) be a function which satisfies f...

Let `f(x)` be `a` function which satisfies `f(x^(3))f'(x)=f'(x)f'(x^(3))+f''(x^(2))` .Given that `f(1)=1&f'''(1)=(1)/(4)` ,then value of `4(f'(1)+f''(1))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f:R rarr R satisfies f(x^(2))*f''(x)=f'(x)*f'(x^(2)) for all real x Given that f(1)=1 and f'''(1)=8, then the value of f'(1)+f''(1) is 2 b.4c.6d.8

let f(x)=x^(2)-3x+4 the values of x which satisfies f(1)+f(x)=f(1)*f(x) is

Let f(x)=x^(2)-3x+4, the value(s) of x which satisfies f(1)+f(x)=f(1)f(x) is

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

Let f(x) be a function such that f(x)*f(y)=f(x+y),f(0)=1,f(1)=4. If 2g(x)=f(x)*(1-g(x))

Let f(x) be a function such that f'((1)/(x))+x^(3)f'(x)=0. What is int_(-1)^(1)f(x)dx

Let f be a one-one function satisfying f'(x)=f(x) then (f^(-1))''(x) is equal to