Home
Class 11
MATHS
Let f(x)=x sin x - (1-cosx). The smalles...

Let `f(x)=x sin x - (1-cosx)`. The smallest positive integer k such that `lim_(x rarr0)(f(x))/(x^(k))!=0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(|x|)/(x)

lim_(x rarr0)(sin x)/(x^(2))

lim_(x rarr0)x sin((1)/(x))

lim_(x rarr0)(sin x)/(x)=1

lim_(x rarr0)(sin x-x)/(x^(3))

lim_(x rarr0)(sin x)/(x+5)

lim_(x rarr0)[(x)/([x])]=

lim_(x rarr0)(sin(x^(o)))/(x)

lim_(x rarr0)(x-sin x)/(x^(3)) =

lim_(x rarr0)(sin x^(@))/(x)