Home
Class 11
MATHS
If x=log(8)(log(8)5) and 5^((y+8^(-x)))=...

If `x=log_(8)(log_(8)5)` and `5^((y+8^(-x)))=5000,` then value of `y` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x and y are solutions of the system of equations {log_(8)(1)+log_(3)(x+2)=log_(3)(3-2y) and 2^(x+y)-8^(3-y)=0 The value of (y-x), is

If log_(8)a+log_(8)b=(log_(8)a)(log_(8)b) and log_(a)b=3 then the value of 'a' is

log_(3)(5+x)+log_(8)8=2^(2)

If y=2^((1)/(log_(x)8)) then x=

If 8^(log_(27)3)+27^(log_(8)4)=5^(log_(x)11), then x is equal to

Let x,y and z be positive real numbers such that x^(log_(2)7)=8,y^(log_(3)5)=81 and z^(log_(5)216)=(5)^((1)/(3)) The value of (x(log_(2)7)^(2))+(y^(log_(3)5)^^2)+z^((log_(5)16)^(2)), is

If log_(4)5=x and log_(5)6=y then

If 3^(log_(3)(5))+5^(log_(x)3) =8 then find the value of x.

log_(8)y=-(1)/(log_(3)2), then the value of y is