Home
Class 12
MATHS
Let f(x) be a non constant function such...

Let `f(x)` be a non constant function such that `int _(0) ^(x) (f (t))^(3) dt = (1)/(x ^(2))(int _(0) ^(x) (f(t)dt ) ) ^(3) AA x in R- {0}` If `f(1)=1` then `f((1)/(2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) is periodic function such that int _(0) ^(x) (f (t))^(3) dt = (1)/(x ^(2))(int _(0) ^(x) (f(t)dt ) ) ^(3) AA x in R- {0} Find the function f (x) if (1) =1.

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

If int_(0)^(x)f(t)dt=x^(2)+int_(x)^(1)t^(2)f(t)dt, then f'((1)/(2)) is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then