Home
Class 11
MATHS
x=a cos^(3)theta,y=a sin^(3)theta...

x=a cos^(3)theta,y=a sin^(3)theta

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a cos^(3)theta,y=b sin^(3)theta, then

If x=a cos^(3)theta,y=b sin^(3)theta, find (d^(3)y)/(dx^(3)) at theta=0

x=a cos^(3)theta,y=b sin^(3)theta : ((x)/(a))^(2/3)+((y)/(b))^(2/3)=1

Find the blanks. (i) If x=a cos^(3)theta,y=b sin^(3)theta then ((x)/(a))^(2/3)+((y)/(b))^(2/3)=ul(P) (ii) if x=a sec theta cos phi,y=b sec theta sin phi and z=c tan theta then (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=ul(Q) (iii) If cos A+cos^(2)A=1 ,then sin^(2)A+sin^(4)A=ul(R)

If x=a cos^(3)theta,y-b sin^(3)theta, find (d^(3)y)/(dx^(3)) at theta=0

Find the slope of the normal to the curve x=a cos^(3)theta,y=sin^(3)theta at quad theta=(pi)/(4)

Find the equation of normal to the curve x = a cos^(3)theta, y=b sin^(3) theta" at point "'theta'.

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=3cos^(3)theta,y=3sin^(3)theta

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=2cos^(3)theta,y=2sin^(3)theta

Let C be a curve defined parametrically as x=a\ cos^3theta , y=a\ sin^3theta,\ \ 0lt=thetalt=pi/2 . Determine a point P on C , where the tangent to C is parallel to the chord joining the points (a ,\ 0) and (0,\ a) .