Home
Class 11
MATHS
If f(0)=1, f(2)=3, f'(2)=5, then the val...

If `f(0)=1`, `f(2)=3`, `f'(2)=5`, then the value of the definite integral `int_0^(1)xf''(2x)dx` is _________

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)-3cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then find the value of the definite integral int_(0)^(1)f(x)dx

The value of the integral int f_(0)^(2)|x^(2)-1|dx is

If f(0)=1,f(2)=3,f'(2)=5, then find the value of int_(0)^(1)xf''(2x)dx

The value of the definite integral int_(-2008)^(2008)((f'(x)+f'(-x))/((2008)^(x)+1))dx

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If f(0)=0, f(3)=3 and f'(3)=4 , then the value of int_(0)^(1)xf'' (3x)dx is equal to

The value of the integral int_(0)^(2a)[(f(x))/({f(x)+f(2a-x)})]dx is equal to a