Home
Class 12
MATHS
The sequence (:a(n-1):),n in N is an ari...

The sequence `(:a_(n-1):),n in N` is an arithmetical progression and `d` is its common difference.If `lim_(n rarr oo)(1-(d^(2))/(a_(1)^(2)))(1-(d^(2))/(a_(2)^(2)))cdots cdots(1-(d^(2))/(a_(n)^(2)))` converges to `(1)/(4)` and `a_(1)=8` then find the value of `d`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3) are in arithmetic progression and d is the common diference, then tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))=

Evaluate: lim_(n rarr oo)((a_(1)^((1)/(1))+a_(2)^((1)/(2))+...+a_(n)^((1)/(n)))/(n))^(nx)

lim_(x rarr oo){((a_(1))^((1)/(x))+(a_(2))^((1)/(x))+...+(a_(n))^((1)/(x)))/(n)}^(nx)

If a_(1)=1 and a_(n+1)=(4+3a_(0))/(3+2a_(n)),n>=1, and if lim_(n rarr oo)a_(n)=a then find the value of a.

If a_(1),a_(2),a_(3),….a_(n) is a.p with common difference d then tan{tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3))) +..+ tan^(-1)((d)/(1+a_(n-1)a_(n)))} is equal to

Evaluate underset( n rarroo)("lim") ((a_(1) + 1)/( a_(1))) ((a_(2) +1)/(a_(2))) "......." ((a_(n) +1)/( a_(n))) where a_(1) 1 and a_(n) = n ( 1+ a_(n-1) ) AA n ge 2

Prove that lim_(n rarr oo)a_(n)=-(1)/(4), where a_(n)=n^(2),(sqrt(1+(1)/(n))+sqrt(1-(1)/(n))-2) for n in N.

If (1^(2)-a_(1))+(2^(2)-a_(2))+(3^(2)-a_(3))+…..+(n^(2)-a_(n))=(1)/(3)n(n^(2)-1) , then the value of a_(7) is

If a_(1),a_(2),a_(3),...a_(n) are in arithmetic progression with common difference d, then evaluate the following expression: tan{tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a^(2)a_(3)))+tan^(-1)((d)/(1+a_(3)a_(4)))+...+tan^(-1)((d)/(1+a_(n-1)a_(n)))}