Home
Class 11
MATHS
If bar(P)=i+j+2k and bar(Q)=3i-2j+k,the ...

If `bar(P)=i+j+2k and bar(Q)=3i-2j+k`,the unit vector perpendicular to both `bar(P)` and `bar(Q)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec P=hat i+hat j+2hat k and vec Q=3hat i-2hat j+hat k ,the unit vector perpendicular to both bar(P) and bar(Q) is (A) (hat i+hat j-hat k)/(sqrt(3)) (B) 5(hat i+hat j-hat k) (C) (1)/(sqrt(3))(hat i-hat j+hat k) (D) (1)/(25)(hat i+hat j-hat k)

If bar(a)=2bar(i)-3bar(j)+5bar(k),bar(b)=-bar(i)+4bar(j)+2bar(k) then find bar(a)timesbar(b) and unit vector perpendicular to both bar(a) and bar(b) .

Let bar(a)=3hat i+2hat j+2hat k,bar(b)=hat i+2hat j-2hat k Then a unit vector perpendicular to both bar(a)-bar(b) and bar(a)+bar(b) is

Let bar(a)=3hat i+2hat j+2hat k , bar(b)=hat i+2hat j-2hat k .Then a unit vector perpendicular to both bar(a)-bar(b) and bar(a)+bar(b) is

If bar(a)=bar(i)+bar(j)+bar(k) , bar(b)=bar(i)+2bar(j)+3bar(k) then a unit vector perpendicular to both vectors (bar(a)+bar(b)) and (bar(a)-bar(b)) is

If bar(a)=7i+2j+k,bar(b)=2j+k-i, then component of bar(a) perpendicular to bar(b) is :

If bar(a)=bar(i)+2bar(j)+bar(k),bar(b)=2bar(j)+bar(k)-bar(i), then component of bar(a) perpendicular to bar(b) is

Let bar(a)=2bar(i)+bar(j)+bar(k),bar(b)=bar(i)+2bar(j)-bar(k) and a unit vector bar(c) be coplanar.If bar(c) is perpendicular to bar(a), then bar(c) is

The adjacent sides of a parallelogram are 2bar(i)+4bar(j)-5bar(k) and bar(i)+2bar(j)+3bar(k) then the unit vector parallel to a diagonal is