Home
Class 12
MATHS
The solution of f^(111)(x)-8f^(11)(x)=0 ...

The solution of `f^(111)(x)-8f^(11)(x)=0` satisfying `f(0)=(1)/(8),f^(1)(0)=0,f^(11)(0)=1` is `f(x)=lambda(e^(alpha x)+beta)-(x)/(alpha)`. Then `alpha, beta = ?`

Promotional Banner

Similar Questions

Explore conceptually related problems

There exists a function f(x) satisfying 'f (0)=1,f(0)=-1,f(x) lt 0,AAx and

if f(x)=(sin (x+alpha)/(sin(x+beta))),alpha ne beta then f(x) has

If f(x)=alpha x+beta and f(0)=f^(1)(0)=1 then f(2) =

Let int_(alpha)^( beta)(f(alpha+beta-x))/(f(x)+f(alpha+beta-x))dx=4 then

A Function f(x) satisfies the relation f(x)=e^(x)+int_(0)^(1)e^(x)f(t)dt* Then (a)f(0) 0

If f(x)= alpha x+beta and f(0)=f^(')(0)=1 then f(2) =

int(x backslash dx)/(root(2 0 0 1 2)((1+x^(2))^(1012)(2+x^(2))^(3012)))=(alpha)/(2 beta)(1-f(x))^(beta/ alpha)+c

The second degree polynomial satisfying f(x),f(0)=0,f(1)=1,f'(x)>0AA x in(0,1)

int_(0)^((alpha)/3)(f(x))/(f(x)+f((alpha-3x)/3))dx=