Home
Class 12
MATHS
The maximum value of the function f(x)=x...

The maximum value of the function `f(x)=x sin x+cos x-(x^(2))/(4)` for `x in[-(pi)/(2),(pi)/(2)]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the function f(x)=sin x;[0,Pi] is

The maximum value of cos^(2)((pi)/(4)-x)+(sin x-cos x)^(2) is

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

Find the maximum and the minimum values,if any,of the following functions f(x=sin3x+4,x in(-(pi)/(2),(pi)/(2))

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

The greatest value of function f(x)=(sin(2x))/(sin(x+(pi)/(4)))

The maximum value of f(x)=sin x+cos2x when in[0,2 pi] is

The difference between the greatest and the least values of the function f(x)=sin2x-x on [-(pi)/(2),(pi)/(2)]

The value of c in Rolle's theorem for the function f (x) = cos 2 (x - (pi)/(4)) in [0, (pi)/(2)] is