Home
Class 11
MATHS
If (sin theta)^(2log(3)(2sin theta)-3)=(...

If `(sin theta)^(2log_(3)(2sin theta)-3)=(sin theta)^(3log_(3)(2sin theta)-3)` for `theta in(0,pi)`, then
(A) sum of all possible values of `theta` is `(3pi)/(2)`
(B) number of values of `theta` satisfying the equation is 2.
(C) number of values of `theta` satisfying the equation is 3.
(D) all solutions to the equations are rational.

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of theta in [0,2 pi] satisfying the equation 2sin^(2)theta=4+3cos theta are

The number of values of theta satisfying the equation sin theta+sin5 theta=sin3 theta such that theta in[0,pi] is

The general value of theta satisfying the equation 2sin^(2) theta -3 sin theta - 2=0 , is .

The number of values of theta in [0, 2pi] that satisfy the equation 3cos2theta+13sin theta-8=0 is

The general value of theta satisfying the equation 2sin^(2)theta-3sintheta-2=0 is

Find the number of values of theta satisfying the equation sin3 theta=4sin theta*sin2 theta sin4 theta in 0<=theta<=2 pi

The sum of values of theta satisfying the equation 1+cos^(4)theta=sin^(4)theta ; theta in[0,2 pi] ,is

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )