Home
Class 11
MATHS
Let T(k)=sin^(k)x+cos^(k)x For all x if ...

Let `T_(k)=sin^(k)x+cos^(k)x `For all x if `T_(1)T_(5)+T_(3)T_(5)=T_(1)T_(7)+T_(3)T_(n)`then `n=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If T_(n)=sin^(n)x+cos^(pi)x prove that (T_(3)-T_(5))/(T_(1))=(T_(5)-T_(7))/(T_(3))

If T_(n)=sin^(n)x+cos^(n)x, prove that 2T_(6)-3T_(4)+1=0

If T_(n)=sin^(n)theta+cos^(n)theta ,prove that (i)(T_(3)-T_(5))/(T_(1))=(T_(5)-T_(7))/(T_(3)) (ii) 2T_(6)-3T_(4)+1=0 (iii) 6T_(10)-15T_(8)+10T_(6)-1=0

Prove the trigonometric identities: If T_(n)=sin^(n)theta+cos^(n)theta, prove that (T_(3)-T_(5))/(T_(1))=(T_(5)-T_(7))/(T_(3))

If T_(n)=sin^(n)theta+cos^(n)theta then (T_(3)-T_(5))/(T_(1))=?

If T_n = sin^(n)theta + cos^(n)theta then prove that (T_5 -T_3): (T_7- T_5) = T_1 :T_3 .

Area of the triangle formed by the threepoints 't_(1)^(prime)*'t_(2)^(prime) and 't_(3)^(prime) on y^(2)=4ax is K|(t_(1)-t_(2))(t_(2)-t_(3))(t_(3)-t_(1))| then K=

In an A.P.if S_(1)=T_(1)+T_(2)+T_(3)+....+T_(n)(nodd)dot S_(2)=T_(2)+T_(4)+T_(6)+.........+T_(n) then find the value of S_(1)/S_(2) in terms of n.