Home
Class 12
MATHS
Vectors vec Aa n d vec B satisfying th...

Vectors ` vec Aa n d vec B` satisfying the vector equation ` vec A+ vec B= vec a , vec Axx vec B= vec ba n d vec A*vec a=1,w h e r e vec aa n d vec b` are given vectors, are a.` vec A=(( vec axx vec b)- vec a)/(a^2)` b. ` vec B=(( vec bxx vec a)+ vec a(a^2-1))/(a^2)` c. ` vec A=(( vec axx vec b)+ vec a)/(a^2)` d. ` vec B=(( vec bxx vec a)- vec a(a^2-1))/(a^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If | vec a|=2,| vec b|=5a n d vec adot vec b=0, then vec ax( vec ax( vec ax( vec ax( vec a x( vec ax vec b))))) is equal to 64 vec a (b) 64 vec b (c) -64 vec b (d) -64 vec a

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

Vectors vec a\ a n d\ vec b are such that | vec a|=3,\ | vec b|=2/3a n d\ ( vec axx vec b) is a unit vector. Write the angle between vec a\ a n d\ vec bdot

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

If vec a+2"" vec b+3"" vec c="" vec0 and |"" vec a|=6,|"" vec b|=3a n d|"" vec c|=2 , then angle between vec aa n d"" vec b is

If | vec axx vec b|^2=( vec adot vec b)^2=144\ a n d\ | vec a|=4 , find vec bdot

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

The vector component of vec b perpendicular to vec a is ( vec bdot vec c) vec a b. ( vec axx( vec bxx vec a))/(| vec a|^2) c. vec axx( vec bxx vec a) d. none of these

If | vec a|=10 ,\ | vec b|=2\ a n d\ | vec axx vec b|=16 find vec adot vec bdot