Home
Class 12
MATHS
if vecalpha||( vecbetaxx vecgamma) , th...

if ` vecalpha||( vecbetaxx vecgamma)` , then `( vecalphaxxbeta)dot( vecalphaxx vecgamma)` equals to `| vecalpha|^2( vecbetadot vecgamma)` b. `| vecbeta|^2( vecgammadot vecalpha)` c. `| vecgamma|^2( vecalphadot vecbeta)` d. `| vecalpha|| vecbeta|| vecgamma|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecalpha||(vecbxxvecgamma), then (vecalphaxxvecbeta).(vecalphaxxvecgamma)= (A) |vecalpha|^2(vecbeta.vecgamma) (B) |vecbeta|^2(vecgamma.vecalpha) (C) |vecgamma|^2(vecalpha.vecbeta) (D) |vecalpha||vecbeta||vecgamma|

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

If alpha+beta+gamma= a vecdelta and vecbeta+vecgamma+vecdelta = b vecalpha and alpha, vecbeta, vecgamma are non coplanar and vecalpha is not parallel to vecdelta then vecalpha+vecbeta+vecgamma+vecdelta equals (A) avecalpha (B) bvecdelta (C) 0 (D) (a+b)vecgamma

Findthe value of vecalphaxx(vecbetaxxvecgamma) , where, vecalpha=2veci-10vecj+2veck, vecbeta=3veci+vecj+2veck, vecgamma =2veci+vecj+3veck

If veca vecb be any two mutually perpendiculr vectors and vecalpha be any vector then |vecaxxvecb|^2 ((veca.vecalpha)veca)/(veca|^2)+|vecaxvecb|^2 ((vecb.vecalpha)vecb)/(|vecb|^2)-|vecaxxvecb|^2vecalpha= (A) |(veca.vecb)vecalpha|(vecaxxvecb) (B) [veca vecb vecalpha](vecbxxveca) (C) [veca vecb vecalpha](vecaxxvecb) (D) none of these

If vec(alpha)=2hati+3hatj-hatk, vec(beta)=-hati+2hatj-4hatk, vecgamma=hati+hatj+hatk , then (vec(alpha)xxvec(beta)).(vec(alpha)xxvec(gamma)) is equal to