Home
Class 12
MATHS
The limit of [1/(x^2)+((2013)^x)/(e^x-1...

The limit of `[1/(x^2)+((2013)^x)/(e^x-1)-1/(e^x-1)]` as `x->0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The limit of [1/x^2+(2013)^x/(e^x-1)-1/(e^x-1)] as xrarr0

The limit of [(1)/(x^(2))+((2013)^(x))/(e^(x)-1)-(1)/(e^(x)-1)] as xto0

The limit of [(1)/(x^(2))+((2)^(x))/(e^(x)-1)-(1)/(e^(x)-1)] as x rarr0

The limit of x sin((1)/(e^(x))) as x rarr 0

The limit of x sin(e^((1)/(x)))asx rarr0

The limit of x sin (e^(1//x)) as xrarr0

Evaluate the following limits: Show that lim_(x to0) ((1)/(x)-(1)/(e^(x)-1))=(1)/(2)

The primitive of the function f(x)=(1-1/(x^2))a^(x+1/x)\ ,\ a >0 is (a) (a^(x+1/x))/((log)_e a) (b) (log)_e adota^(x+1/x) (c) (a^(x+1/x))/x(log)_e a (d) x(a^(x+1/x))/((log)_e a)

int_(0)^(1)(e^(x))/(1+e^(2x))dx

The limit of x sin (e^(-1//x)) as x rarr0