Home
Class 12
MATHS
Let vec aa n d vec b be two non-zero pe...

Let ` vec aa n d vec b` be two non-zero perpendicular vectors. A vecrtor ` vec r` satisfying the equation ` vec rxx vec b= vec a` can be ` vec b-( vec axx vec b)/(| vec b|^2)` b. `2 vec b-( vec axx vec b)/(| vec b|^2)` c. `| vec a| vec b-( vec axx vec b)/(| vec b|^2)` d. `| vec b| vec b-( vec axx vec b)/(| vec b|^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

Show that ( vec axx vec b)^2=| vec a|^2| vec b|^2-( vec adot vec b)^2=| [vec a.vec a, vec a.vec b],[ vec a.vec b, vec b.vec b]|

vec aa n d vec b are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to vec a , vec ba n d vec axx vec b is a.1/(sqrt(2))( vec a+ vec b+ vec axx vec b) b. 1/2( vec axx vec b+ vec a+ vec b) c. 1/(sqrt(3))( vec a+ vec b+ vec axx vec b) d. 1/3( vec a+ vec b+ vec axx vec b)

If non-zero vectors vec aa n d vec b are equally inclined to coplanar vector vec c ,t h e n vec c can be a. (| vec a|)/(| vec a|+2| vec b|)a+(| vec b|)/(| vec a|+| vec b|) vec b b. (| vec b|)/(| vec a|+| vec b|)a+(| vec a|)/(| vec a|+| vec b|) vec b c. (| vec a|)/(| vec a|+2| vec b|)a+(| vec b|)/(| vec a|+2| vec b|) vec b d. (| vec b|)/(2| vec a|+| vec b|)a+(| vec a|)/(2| vec a|+| vec b|) vec b

(vec a-vec b) * (vec a + vec b) = 27 and | vec a | = 2 | vec b | find | vec a | and | vec b |

For any two vectors vec a\ a n d\ vec b , fin d\ ( vec axx vec b). vecbdot

If vec a,vec b and vec c are three mutually perpendicular vectors,then the vector which is equally inclined to these vectors is a.vec a+vec b+vec c b.(vec a)/(|vec a|)+(vec b)/(|vec b|)+(vec c)/(|vec c|) c.(vec a)/(|vec a|^(2))+(vec b)/(|vec b|^(2))+(vec c)/(|vec c|^(2))d|vec a|vec a-|vec b|vec b+|vec c|vec c

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

If vec a , vec b and vec c are three non-zero, non coplanar vector vec b_1= vec b-( vec bdot vec a)/(| vec a|^2) vec a , vec c_1= vec c-( vec cdot vec a)/(| vec a|^2) vec a+( vec bdot vec c)/(| vec c|^2) vec b_1 , , c_2= vec c-( vec cdot vec a)/(| vec a|^2) vec a-( vec bdot vec c)/(| vec b_1|^2) , b_1, vec c_3= vec c-( vec cdot vec a)/(| vec c|^2) vec a+( vec bdot vec c)/(| vec c|^2) vec b_1 , vec c_4= vec c-( vec cdot vec a)/(| vec c|^2) vec a=( vec bdot vec c)/(| vec b|^2) vec b_1 then the set of orthogonal vectors is ( vec a , vec b_1, vec c_3) b. ( vec a , vec b_1, vec c_2) c. ( vec a , vec b_1, vec c_1) d. ( vec a , vec b_2, vec c_2)

For any two vectors vec a and vec b ,prove that (vec a xxvec b)^(2)=|vec a|^(2)|vec b|^(2)-(vec a*vec b)^(2)