Home
Class 12
MATHS
If vec aa n d vec b are two vectors and...

If ` vec aa n d vec b` are two vectors and angle between them is `theta,` then `| vec axx vec b|^2+( vec adot vec b)^2=| vec a|^2| vec b|^2` `| vec axx vec b|=( vec adot vec b),iftheta=pi//4` ` vec axx vec b=( vec adot vec b) hat n ,(w h e r e hat n` is unit vector,`)` if `theta=pi//4` `( vec axx vec b)dot( vec a+ vec b)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If | vec axx vec b|^2=( vec adot vec b)^2=144\ a n d\ | vec a|=4 , find vec bdot

If vec a and vec b are unit vectors and 60^(@) is the angle between them,then (2vec a-3vec b)*(4vec a+vec b) equals

If | vec a|=10 ,\ | vec b|=2\ a n d\ | vec axx vec b|=16 find vec adot vec bdot

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

If vec a , vec b are two vectors, then write the truth value of the following statements: vec a=- vec b| vec a|=| vec b| | vec a|=| vec b| vec a=+- vec b | vec a|=| vec b| vec a= vec b

If | vec axx vec b|=4,\ | vec adot vec b|=2,\ t h e n\ | vec a|^2| vec b|^2= 6 b. 2 c. 20 d. 8

Show that ( vec axx vec b)^2=| vec a|^2| vec b|^2-( vec adot vec b)^2=| [vec a.vec a, vec a.vec b],[ vec a.vec b, vec b.vec b]|

prove that | vec axx vec b|=( vec adot vec b)t a ntheta, w h e r e theta is the angle between vec a a n d vec bdot

If | vec a|=sqrt(26), | vec b|=7 a n d | vec axx vec b|=35 , fin d vec adot vec bdot

If a ,\ b represent the diagonals of a rhombus, then vec axx vec b= vec0 b. vec adot vec b=0 c. vec adot vec b=1 d. vec axx vec b= vec a