Home
Class 12
MATHS
Let vec a , vec b ,a n d vec c be non-z...

Let ` vec a , vec b ,a n d vec c` be non-zero vectors and ` vec V_1= vec axx( vec bxx vec c)a n d vec V_2( vec axx vec b)xx vec cdot` Vectors ` vec V_1a n d vec V_2` are equal. Then ` vec aa n vec b` are orthogonal b. ` vec aa n d vec c` are collinear c. ` vec ba n d vec c` are orthogonal d. ` vec b=lambda( vec axx vec c)w h e nlambda` is a scalar

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are three non-zero vectors,prove that [vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

If vec a, vec b, vec c are non-coplanar vectors and vec v * vec a = vec v * vec b = vec v * vec c = 0, then vec v must be a

vec a, vec b, vec c, dare any four vectors then (vec a xxvec b) xx (vec c xxvec d) is a vector Perpendicular to vec a, vec b, vec c, vec d

If vec a,vec c,vec d are non-coplanar vectors,then vec d*{vec a xx[vec b xx(vec c xxvec d)]} is equal to

For any two vectors vec a\ a n d\ vec b , fin d\ ( vec axx vec b). vecbdot

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

For any three vectors adotb\ a n d\ c write the value of vec axx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)dot