Home
Class 12
MATHS
Let vec a , vec b , a n d vec c be thre...

Let ` vec a , vec b , a n d vec c` be three non-coplanar vectors and ` vec d` be a non-zero vector, which is perpendicular to `( vec a+ vec b+ vec c)dot` Now ` vec d=( vec axx vec b)sinx+( vec bxx vec c)cosy+2( vec cxx vec a)dotT h e n` a.`( vec ddot( vec a+ vec b))/([ vec a vec b vec c])=2` b.`( vec ddot( vec a+ vec b))/([ vec a vec b vec c])=-2` c. minimum value of `x^2+y^2` is `pi^2//4` d. minimum value of `x^2+y^2` is `5pi^2//4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec b ,a n d vec c be three non-coplanar vector and a^(prime),b^(prime)a n dc ' constitute the reciprocal system of vectors, then prove that vec r=( vec rdot vec a ') vec a+( vec rdot vec b^') vec b+( vec rdot vec c^') vec c vec r=( vec rdot vec a ') vec a '+( vec rdot vec b^') vec b '+( vec rdot vec c ') vec c '

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

The vector component of vec b perpendicular to vec a is ( vec bdot vec c) vec a b. ( vec axx( vec bxx vec a))/(| vec a|^2) c. vec axx( vec bxx vec a) d. none of these

Let vec a, vec b and vec c, are non-coplianar vectors such that [(vec a xxvec b) * vec c] = | vec a || vec b || vec c | then

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

Let vec a, vec b, vec c be three non-zero vectors such that [vec with bvec c] = | vec a || vec b || vec c | then

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a, vec b, vec c are three non-coplanar vectors such that vec a + vec b + vec c = alphavec d and vec b + vec c + vec d = betavec a then vec a + vec b + vec c + vec d is equal to

If vec a is a non-zero vector and vec a * vec b = vec a * vec c, vec a xxvec b = vec a xxvec c, then

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =