Home
Class 12
MATHS
The number N= 2^ (log2 3·log3 4.log4 5.....

The number `N= 2^ (log_2 3·log_3 4.log_4 5....... log_99 100)` simplifies to

Promotional Banner

Similar Questions

Explore conceptually related problems

The number N=2^(log_(2)3log_(3)4*log_(4)5.......log_(99)100) simplifies to

log_10(log_2 3) + log_10(log_3 4) + log_10(log_4 5) + ........ + log_10 (log_1023 1024) simplifies to

log_4log_5 25+log_3log_3 3

The value of log_(2)*log_(3)dots......log_(100)100^(99)

The value of 3^(log_4 5)+4^(log_5 3)-5^(log_4 3)-3^(log_5 4)=

What is the value of log_(3)2,log_(4)3.log_(5)4. . .log_(16)15 ?

Given log_2(a) + log_2(2) + log_3(1 + b^2)=2 (a>1. b in R),c=log_10(2^log_2(3)......log_99(100)),d=log_10(2^log_2(3^log_3(4........log_99(100) Then find the value of (a+b+c+d).

The number N=(1+2log_(3)2)/((1+log_(3)2)^(2))+(log_(6)2)^(2) when simplified reduces to: