Home
Class 12
MATHS
vec aa n d vec b are two non-collinear u...

` vec aa n d vec b` are two non-collinear unit vector, and ` vec u= vec a-( vec adot vec b) vec ba n d vec v= vec axx vec bdot` Then `| vec v|` is `| vec u|` b.`| vec u|+| vec udot vec b|` c. `| vec u|+| vec udot vec a|` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a and vec b be two non-collinear unit vector.If vec u=vec a-(vec a*vec b)vec b and vec v=vec a xxvec b, then |vec v| is |vec u| b.|vec u|+|vec u*vec a|c.|vec u|+|vec u*vec b|d|vec u|+widehat u.|vec a+vec b|

If | vec axx vec b|^2=( vec adot vec b)^2=144\ a n d\ | vec a|=4 , find vec bdot

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

For any two vectors vec a\ a n d\ vec b , fin d\ ( vec axx vec b). vecbdot

If vec a, vec b, vec c are non-coplanar vectors and vec v * vec a = vec v * vec b = vec v * vec c = 0, then vec v must be a

vec u = vec a-vec b, vec v = vec a + vec b and | vec a | = | vec b | = 2 then | vec u xxvec v | is equal to

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these