Home
Class 12
MATHS
" (ii) "x sqrt(1+x^(2))+log(x+sqrt(x^(2)...

" (ii) "x sqrt(1+x^(2))+log(x+sqrt(x^(2)+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

log(x+sqrt(1+x^(2)))

Diferentiate x sqrt(1+x^(2))+log(x+sqrt(x^(2)+1))

If y=(x^(2))/(2)+(x)/(2) sqrt(x^(2)+1)+log sqrt(x+sqrt(x^(2)+1)) , prove that, 2y=x (dy)/(dx)+log((dy)/(dx))

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

int((x)/(sqrt(1+x^(2)))-1)log(x+sqrt(1+x^(2)))backslash dx

y=(x^(2))/(2)+(1)/(2)x sqrt(x^(2)+1)+ln sqrt(x+sqrt(x^(2)+1)) prove that 2y=xy'+ln y'

If quad (x^(2))/(2)+(1)/(2)x sqrt(x^(2)+1)+log_(e)sqrt(x+sqrt(x^(2)+1))y=(x^(2))/(2)+(1)/(2)x sqrt(x^(2)+1)+log_(e)sqrt(x+sqrt(x^(2)+1)) prove that 2y=xy'+log_(e)y', where y' denotes the derivative w.r.x.

The value of int_(-1)^(1) ((logx+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x sqrt(1+x^(2))))/(x+log(x+logsqrt(1+x^(2))))f(-x)dx ,

int(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=a sqrt(1+x^(2))ln(x+sqrt(1+x^(2)))+bx+c, then (A)a=1,b=-1(B)a=1,b=1(C)a=-1,b=1 (D) a=-1,b=-1