Home
Class 12
MATHS
If in triangle A B C , vec A B= vec u/(|...

If in triangle `A B C , vec A B= vec u/(| vec u|)- vec v/(| vec v|)a n d vec A C=(2 vec u)/(| vec u|),w h e r e| vec u|!=| vec v|,` then `1+cos2A+cos2B+cos2C=0` b.`sinA=cos C` c. projection of `A C` on `B C` is equal to `B C` d. projection of `A B` on `B C` is equal to `A B`

Promotional Banner

Similar Questions

Explore conceptually related problems

vec u = vec a-vec b, vec v = vec a + vec b and | vec a | = | vec b | = 2 then | vec u xxvec v | is equal to

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

If vec a xxvec b = vec b xxvec c = vec c xxvec a, then vec a + vec b + vec c is equal to

[[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

If vec( A) + vec(B) =vec( C ) , and | vec(A)| =2 | vec( B) | and vec( B). vec( C ) = 0 , then

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

If vec A, vec B and vec C are vectors such that | vec B | - | vec C | * Prove [(vec A + vec B) xx (vec A + vec C)] xx (vec B + vec C) * (case B + case C) = 0

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

If |veca| = 1, |vec b| = 2, |vec c| = 3 and vec a +vec b +vec c = 0 , then the value of vec a * vec b +vec b. vec c +vec c* vec a equals