Home
Class 12
MATHS
If axx(bxxc)=(axxb)xxc , then ( vec cxx ...

If `axx(bxxc)=(axxb)xxc ,` then `( vec cxx vec a)xx vec b= vec0` b.` vec cxx( vec axx vec b)= vec0` c. ` vec bxx( vec cxx vec a) vec0` d. `( vec cxx vec a)xx vec b= vec bxx( vec cxx vec a)= vec0`

Promotional Banner

Similar Questions

Explore conceptually related problems

(vec a-vec b)*{(vec b-vec c)xx(vec c-vec a)}=0

Let lambda = vec a xx (vec b + vec c), vec mu = vec b xx (vec c + vec a) and vec nu = vec c xx (vec a + vec b). Then

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

Prove that (vec a-vec b)(vec b-vec c)xx(vec c-vec a)=0

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n vec adot vec b+ vec bdot vec c+ vec cdot vec a=0 b. vec axx vec b= vec bxx vec c= vec cxx vec a c. vec adot vec b= vec bdot vec c= vec cdot vec a d. vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

If vec x+ vec cxx vec y= vec aa n d vec y+ vec cxx vec x= vec b ,w h e r e vec c is a nonzero vector, then which of the following is not correct? vec x=( vec bxx vec c+ vec a+( vec cdot vec a) vec c)/(1+ vec cdot vec c) b. vec x=( vec cxx vec b+ vec b+( vec cdot vec a) vec c)/(1+ vec cdot vec c) c. vec y=( vec axx vec c+ vec b+( vec cdot vec b) vec c)/(1+ vec cdot vec c) d. none of these

vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)