Home
Class 11
MATHS
[" If sum of maximum and minimum value o...

[" If sum of maximum and minimum value of "y=log_(2)(x^(4)+x^(2)+1)-log_(2)(x^(4)+x^(3)+2x^(2)+x+1)" can be "],[" expressed in form "((log_(2)m)-n)," where "m" and "2" are coprime then compute "(m+n)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum of maximum and minimum value of y=log_(2)(x^(4)+x^(2)+1)-log_(2)(x^(4)+x^(3)+2x^(2)+x+1) can be expressed in form ((log_(2)m)-n), where m and n are coprime then compute (m+n)

lf sum of maximum and minimum value of y = log_2(x^4+x^2+1) - log_2 (x^4 +x^3 +2x^2+x+1) can be expressed in form ((log_2 m)-n) , where m and n are coprime then compute (m+n) .

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))

log_(2)(4^(x)+4)=log_(2)2^(x)+log_(2)(2^(x+1)-3)

Find the value of x,log_(4)(x+3)-log_(4)(x-1)=log_(4)8-2

If (log_(2)(4x^(2)-x-1))/(log_(2)(x^(2)+1))>1, then x may be

For x in[1,16],M and m denotes maximum and minimum values of f(x)=log_(2)^(2)x-log_(2)x^(3)+3 respectively,then value of (2M-4m) is-

(log_(4)x-2)*log_(4)x=(3)/(2)(log_(4)x-1)

If log_(1//2)(4-x)ge log_(1//2)2-log_(1//2)(x-1) , then x can belong to