Home
Class 14
MATHS
[" 22.If "vec p" and "vec q" are unit ve...

[" 22.If "vec p" and "vec q" are unit vectors forming an angle of "30^(@);" find the area of the parallelogram "],[" having "vec a=vec p+2vec q" and "vec b=2vec p+vec q" as its diagonals."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec p and vec q are unit vectors forming an angle of 30^(0); find the area of the parallelogram having vec a=vec p+2vec q and vec b=2vec p+vec q is its diagonals.

If vec p and vec q are unit vectors forming an angle of 30^0; find the area of the parallelogram having vec a= vec p+2 vec q and vec b=2 vec p+ vec q is its diagonals.

(22) if vec p and vec q are unit vectors forming an angle of 30^@ ; find the area of the parallelogram having veca=vecp+2vecq and vecb=2vecp+vecq as its diagonals. (23) For any two vectors vec a and vec b , prove that | vec a xxvec b|^2=| [vec a* vec a ,vec a*vec b],[ vec b* vec a, vec b* vec b]| .

(22) if vec p and vec q are unit vectors forming an angle of 30^@ ; find the area of the parallelogram having veca=vecp+2vecq and vecb=2vecp+vecq as its diagonals. (23) For any two vectors vec a and vec b , prove that | vec a xxvec b|^2=| [vec a* vec a ,vec a*vec b],[ vec b* vec a, vec b* vec b]| .

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

If vec p xxvec q=vec r and vec p*vec q=c, then vec q is

For three vectors vec p,vec q and vec r if vec r=3vec p+4vec q and 2vec r=vec p-3vec q then

The area of the parallelogram constructed on the vectors vec a=vec p+2vec q and vec b=2vec p+vec q as sides vec p,vec q are unit vectors.Find their area

If vec P and vec Q are two vectors, then the value of (vec P + vec Q) xx (vec P - vec Q) is