Home
Class 12
MATHS
Let vec aa n d vec b be two non-colline...

Let ` vec aa n d vec b` be two non-collinear unit vector. If ` vec u= vec a-( vec adot vec b) vec ba n d vec v= vec axx vec b ,t h e n| vec v|` is `| vec u|` b. `| vec u|+| vec udot vec a|` c. `| vec u|+| vec udot vec b|` d. `| vec u|+ hat udot| vec a+ vec b|`

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a and vec b are two non-collinear unit vector, and vec u=vec a-(vec a*vec b)vec b and vec v=vec a xxvec b Then |vec v| is |vec u| b.|vec u|+|vec u*vec b| c.|vec u|+|vec u*vec a| d.none of these

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

If | vec axx vec b|^2=( vec adot vec b)^2=144\ a n d\ | vec a|=4 , find vec bdot

vec u = vec a-vec b, vec v = vec a + vec b and | vec a | = | vec b | = 2 then | vec u xxvec v | is equal to

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then vec b= vec c b. vec b=0 c. vec b+ vec c=0 d. none of these

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

If vec a, vec b, vec c are non-coplanar vectors and vec v * vec a = vec v * vec b = vec v * vec c = 0, then vec v must be a

Let vec a, vec b and vec c, are non-coplianar vectors such that [(vec a xxvec b) * vec c] = | vec a || vec b || vec c | then

Prove that if [ vec l vec m vec n] are three non-coplanar vectors, then [ vec l vec m vec n]( vec axx vec b)=| vec ldot vec a vec ldot vec b vec l vec mdot vec a vec mdot vec b vec m vec ndot vec a vec ndot vec b vec n| .

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot