Home
Class 12
MATHS
If (I-A)^(-1)=I+A+A^2+....+A^7, then A^n...

If `(I-A)^(-1)=I+A+A^2+....+A^7`, then `A^n=0` , where n is

Promotional Banner

Similar Questions

Explore conceptually related problems

If (I-A)^(-1)=I+A+A^2+...+A^7, then A^n=O , where n is

If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) A^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) ^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) ^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

If A^(n) = 0 , then evaluate (i) I+A+A^(2)+A^(3)+…+A^(n-1) (ii) I-A + A^(2) - A^(3) +... + (-1) ^(n-1) for odd 'n' where I is the identity matrix having the same order of A.

If A=[{:(i,0),(0,i):}], n inN then A^(4n)= ...... (where I is imaginary complex number and i^(2)=-1)

Let A=[[0, 1],[ 0, 0]] show that (a I+b A)^n=a^n I+n a^(n-1)b A , where I is the identity matrix of order 2 and n in N .