Home
Class 12
MATHS
The position vectors of the vertices ...

The position vectors of the vertices `A ,Ba n dC` of a triangle are three unit vectors ` vec a , vec b ,a n d vec c ,` respectively. A vector ` vec d` is such that ` vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot` Then triangle `A B C` is a. acute angled b. obtuse angled c. right angled d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a , vec b , vec c are three non coplanar vectors such that vec ddot vec a= vec ddot vec b= vec ddot vec c=0, then show that d is the null vector.

If vec a,vec b,vec c and vec d are distinct vectors such that vec a xxvec c=vec b xxvec d and vec a xxvec b=vec c xxvec d prove that (vec a-vec d)vec b-vec c!=0

If vec a a n d vec b are two vectors such that vec adot vec b=6, | vec a|=3 a n d | vec b|=4. Write the projection of vec a on vec bdot

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

For any two vectors vec a\ a n d\ vec b , fin d\ ( vec axx vec b). vecbdot

If vec a, vec b, vec c and vec d are unit vectors such that (vec a xxvec b) * (vec c xxvec d) = 1 and vec a * vec c = (1) / (2)

Three vectors vec a , vec b , vec c satisfy the condition vec a+ vec b+ vec c= vec0 . Evaluate the quantity mu= vec adot vec b+ vec bdot vec c+ vec cdot vec a , if | vec a|=1, | vec b|=4 a n d | vec c|=2.

The vectors vec a,vec b,vec c,vec d are coplanar then

If vec a,vec b,vec c are three non coplanar vectors such that vec a.vec a*vec a=vec dvec b=vec d*vec c=0 then show that vec d is the null vector.