Home
Class 12
MATHS
Given that vec a , vec b , vec p , vec ...

Given that ` vec a , vec b , vec p , vec q` are four vectors such that ` vec a+ vec b=mu vec p , vec b*vec q=0a n d|vec b|^2=1,w h e r emu` is a scalar. Then `|( vec adot vec q) vec p-( vec pdot vec q) vec a|` is equal to (a) `2| vec p . vec q|` (b) `(1//2)| vec p . vec q|` (c) `| vec pxx vec q|` (d) `| vec p . vec q|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec p xxvec q=vec r and vec p*vec q=c, then vec q is

If vec p = vec a + vec b, vec q = vec a-vec b | vec a | = | vec b | = 1 then | vec p xxvec q | =

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec P and vec Q are two vectors, then the value of (vec P + vec Q) xx (vec P - vec Q) is

If |vec p|=2|vec q|=3 then (|vec p xxvec q|)/(sin(vec p,vec q))=

If vec p + vec q + vec r = xvec s and vec q + vec r + vec s = yvec p and are vec p, vec q, vec r non coplaner vectors then | vec p + vec q + vec r + vec r + vec s | =

If | vec a|=2,| vec b|=5a n d vec adot vec b=0, then vec ax( vec ax( vec ax( vec ax( vec a x( vec ax vec b))))) is equal to 64 vec a (b) 64 vec b (c) -64 vec b (d) -64 vec a

If vec a=vec p+vec q,vec p xxvec b=0 and vec q*vec b=0 then prove that (vec b xx(vec a xxvec b))/(vec b*vec b)=vec q

Given four vectors vec a, vec b, vec c, vec d such that vec a + vec b + vec c = alphavec d, vec b + vec c + vec d = betavec a and that vec a, vec a, vec b, vec c are non-coplanar, then the sum vec a + vec b + vec c + vec d is

If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then