Home
Class 12
MATHS
In a quadrilateral A B C D , vec A C is ...

In a quadrilateral `A B C D , vec A C` is the bisector of ` vec A Ba n d vec A D` , angle between ` vec A Ba n d vec A D` is `2pi//3` , `15| vec A C|=3| vec A B|=5| vec A D|dot` Then the angle between ` vec B Aa n d vec C D` is `cos^(-1)(sqrt(14))/(7sqrt(2))` b. `cos^(-1)(sqrt(21))/(7sqrt(3))` c. `cos^(-1)2/(sqrt(7))` d. `cos^(-1)(2sqrt(7))/(14)`

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a + vec b + vec c = vec 0, | vec a | = 3, | vec b | = 5, | vec c | = 7 then angle between vec a and vec b is

I|vec a|=sqrt(3)|vec b|=2 and vec a*vec b=sqrt(3), find the angle between vec a and vec b

Given that (vec x-hat a).(vec x+hat a)=8 and vec x.hat a=2 ,then the angle between (vec x-hat a) and (vec x+hat a) is (A) cos^(-1)((3)/(sqrt(14))) (B) cos^(-1)((3)/(sqrt(21))) (C) cos^(-1)((5)/(sqrt(21))) (D) cos^(-1)((4)/(sqrt(21)))

If vec a+2"" vec b+3"" vec c="" vec0 and |"" vec a|=6,|"" vec b|=3a n d|"" vec c|=2 , then angle between vec aa n d"" vec b is

vec a+vec b+vec c=vec 0,|vec a|=3,|vec b|=5,|vec c|=7 then the angle between vec a and vec b is (pi)/(6) b.(2 pi)/(3) c.(5 pi)/(3)d*(pi)/(3)

Given that vec(A)+vec(B)=vec(C ) . If |vec(A)|=4, |vec(B)|=5 and |vec(C )|=sqrt(61) , the angle between vec(A) and vec(B) is

Vectors vec a\ a n d\ vec b are such that | vec a|=3,\ | vec b|=2/3a n d\ ( vec axx vec b) is a unit vector. Write the angle between vec a\ a n d\ vec bdot

If vec a , vec b , vec c are three vectors such that | vec a+ vec b+ vec c|=1, vec c=lambda( vec axx vec b)a n d| vec a|=1/(sqrt(2)),| vec b|=1/(sqrt(3)),| vec c|=1/(sqrt(6)) , find the angle between vec aa n d vec bdot

If the two adjacent sides of two rectangles are represented by vectors vec p=5 vec a-3 vec b ; vec q=- vec a-2 vec ba n d vec r=-4 vec a- vec b ; vec s=- vec a+ vec b , respectively, then the angel between the vector vec x=1/3( vec p+ vec r+ vec s)a n d vec y=1/5( vec r+ vec s) is a.cos^(-1)((19)/(5sqrt(43))) b. cos^(-1)((19)/(5sqrt(43))) c. picos^(-1)((19)/(5sqrt(43))) d. cannot be evaluate

If vec a,vec b, and vec c are such that [vec avec bvec c]=1,vec c=lambdavec a xxvec b, angle, between vec a and vec b is (2 pi)/(3),|vec a|=sqrt(2),|vec b|=sqrt(3) and |vec c|=(1)/(sqrt(3)) then the angel between vec a and vec b is (pi)/(6) b.(pi)/(4) c.(pi)/(3) d.(pi)/(2)