Home
Class 14
MATHS
(2+sqrt(2)+1/(2+sqrt(2))+1/(sqrt(2)-2)) ...

`(2+sqrt(2)+1/(2+sqrt(2))+1/(sqrt(2)-2))` simplifies to `2-sqrt(2)` (b) 2 (c) `2+sqrt(2)` (d) `2sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1+sqrt(2))/(3-2sqrt(2))=A sqrt(2)+B

((2+sqrt(3))/(2-sqrt(3))+(2-sqrt(3))/(2+sqrt(3))+(sqrt(3)-1)/(sqrt(3)+1)) simplifies to 16-sqrt(3)(b)4-sqrt(3)(c)2-sqrt(3) (d) 2+sqrt(3)

1/(sqrt(9)-\ sqrt(8)) is equal to: (a) 3+2sqrt(2) (b) 1/(3+2sqrt(2)) (c) 3-2sqrt(2) (d) 3/2-\ sqrt(2)

If (0,1),(1,1)a n d(1,0) be the middle points of the sides of a triangle, its incentre is (2+sqrt(2),2+sqrt(2) ) (b) [2+sqrt(2),-(2+sqrt(2))] (2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]

If (0,1),(1,1)a n d(1,0) be the middle points of the sides of a triangle, its incentre is (2+sqrt(2),2+sqrt(2) ) (b) [2+sqrt(2),-(2+sqrt(2))] (2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]

(1)/(sqrt(9)-sqrt(8)) is equal to: 3+2sqrt(2)(b)(1)/(3+2sqrt(2)) (c) 3-2sqrt(2)(d)(3)/(2)-sqrt(2)

(sqrt8)^(1/3) = ? (a) 2 (b) 4 (c) sqrt2 (d) 2sqrt2

If (0,1),(1,1) and (1,0) be the middle points of the sides of a triangle,its incentre is (2+sqrt(2),2+sqrt(2))( b) [2+sqrt(2),-(2+sqrt(2))](2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]

[(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))] in simplified form equals (a) 0 (b) (1)/(sqrt(2)) (c) 1 (c) sqrt(2)

sqrt 2(sqrt 2+1) - sqrt 2 (1+sqrt2) =?