Home
Class 10
MATHS
[x" and "beta" are the zeros of the quad...

[x" and "beta" are the zeros of the quadratic polynomial "f(x)=x^(2)-px+q," prov "],[+(beta^(2))/(a^(2))=(p^(4))/(a^(2))-(4p^(2))/(a)+2]

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-px+q, prove that (a^(2))/(beta^(2))+(beta^(2))/(a^(2))=(p^(4))/(q^(2))-(4p^(2))/(q)+2

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-px+q ,prove that (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2))=(p^(4))/(q^(2))-4(p^(2))/(q)+2

If alphaa n dbeta are the zeros of the quadratic polynomial f(x)=x^2-p x+q , prove that (alpha^2)/(beta^2)+(beta^2)/(alpha^2)=(p^4)/(q^2)-(4p^2)/q+2

If alpha and beta are zeros of the quadratic polynomial f(x) = x^(2) - px + q , prove that (alpha^(2))/(beta^(2)) +(beta^(2))/(alpha^(2)) = (p^(4))/(q^(2)) - (4p^(2))/(q) + 2 .

If alpha and beta are the zeros of the quadratic polynomial f(x)=ax^(2)+bx+c, then evaluate: alpha^(4)beta^(4)

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-p(x+1)-c, show that (alpha+1)(beta+1)=1-c

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-p(x+1)-c, show that (alpha+1)(beta+1)=1-c

If alpha and beta be the zeroes of the quadratic polynomial f(x)=x^2-7x-4 then alpha/beta+beta/alpha=

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-px+q, then find the values of (i)alpha^(2)+beta^(2)( ii) (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeros of the quadratic polynomial f(x)=2x^(2)+bx+c ,then evaluate: a[(alpha^(2))/(beta)+(beta^(2))/(alpha)]+b[(alpha)/(beta)+(beta)/(alpha)]