Home
Class 12
MATHS
If y=e^(ax)sinbx, then (d^(2)y)/(dx^(2))...

If `y=e^(ax)sinbx,` then `(d^(2)y)/(dx^(2))-2a(dy)/(dx)+a^(2)y=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(ax)cos bx, Show that (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,

If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

If y=e^(ax)cosbx , then prove that (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .

If y=e^(ax) sin be then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

(d^(2)y)/(dx^(2))+(dy)/(dx)+y=(1-e^(x))^(2)

If y=e^(ax)cosbx , then prove that : (d^(2)y)/(dx^(2))-2ady/dx+(a^(2)+b^(2))y=0 .