Home
Class 12
MATHS
" 1."f(x)=sqrt(x^(3)-3x^(2)+2x)...

" 1."f(x)=sqrt(x^(3)-3x^(2)+2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of f(x)=(1)/(sqrt(x^(3)-3x^(2)+2x)) is

Domain of f(x)=1/sqrt(x^3-3x^2+2x) is

Find domain f(x)=sqrt((2x+1)/(x^3-3x^2+2x))

Find domain f(x)=sqrt((2x+1)/(x^3-3x^2+2x))

Find domain f(x)=sqrt((2x+1)/(x^(3)-3x^(2)+2x))

Find domain f(x)=sqrt((2x+1)/(x^3-3x^2+2x))

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

f(x)=sqrt(log((3x-x^(2))/(x-1)))