Home
Class 12
MATHS
If vec a , vec ba n d vec c are three n...

If ` vec a , vec ba n d vec c` are three non-coplanar vectors, then `( vec a+ vec b+ vec c)dot[( vec a+ vec b)xx( vec a+ vec c)]` equals `0` b. `[ vec a vec b vec c]` c. `2[ vec a vec b vec c]` d. `-[ vec a vec b vec c]`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a, vec b, vec c are three non-coplanar vectors such that vec a + vec b + vec c = alphavec d and vec b + vec c + vec d = betavec a then vec a + vec b + vec c + vec d is equal to

If vec a,vec b and vec c are three non-zero vectors,prove that [vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

Which of the following statement (s) is / are correct If vec a, vec b, vec c are non-coplanar and vec d is any vector, then [vec dvec bvec c] vec a + [vec dvec cvec a] vec b + [ vec dvec avec b] vec c- [vec avec bvec c] vec d = vec 0

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

If vec a, vec b and vec c are non coplaner vectors such that vec b xxvec c = vec a, vec c xxvec a = vec b and vec a xxvec b = vec c then | vec a + vec b + vec c | =

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

Prove that [vec a,vec b,vec c+vec d]=[vec a,vec b,vec c]+[vec a,vec b,vec d]

If vec a,vec c,vec d are non-coplanar vectors,then vec d*{vec a xx[vec b xx(vec c xxvec d)]} is equal to