Home
Class 12
MATHS
Statement 1: vec a , vec b ,a n d vec c...

Statement 1: ` vec a , vec b ,a n d vec c` are three mutually perpendicular unit vectors and ` vec d` is a vector such that ` vec a , vec b , vec ca n d vec d` are non-coplanar. If `[ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c` Statement 2: `[ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d` is equally inclined to `veca,vecb,vecc.`

Promotional Banner

Similar Questions

Explore conceptually related problems

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a, vec b, vec c are three mutually perpendicular vectors such that | vec a | = | vec b | = | vec c | then (vec a + vec b + vec c) * vec a =

if vec a,vec b and vec c are there mutually perpendicular unit vectors and vec a ia a unit vector make equal angles which vec a,vec b and vec c then find the value of |vec a+vec b+vec c+vec d|^(2)

If vec a,vec b, and vec c are there mutually perpendicular unit vectors and vec d is a unit vector which makes equal angles with vec a,vec b, and vec c, the find the value off |vec a+vec b+vec c+vec d|^(2)

The vectors vec a,vec b,vec c,vec d are coplanar then

vec a,vec b,vec c are mutually perpendicular unit vectors and vec d is a unit vector equally inclined to each other of vec a,vec b and vec c at an angle of 60^(@) then |vec a+vec b+vec c+vec d|^(2)=

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

Let vec a, vec b, vec c, vec d be unit vectors such that vec a * vec b + vec a * vec c + vec a * vec d + vec b * vec c + vec b * vec d + vec c * vec d = -2 Then [vec with bvec c] + [vec with bvec d] + [vec with cvec d] + [vec bvec cvec d] =