Home
Class 12
MATHS
If chord BC subtends right angle at the ...

If chord BC subtends right angle at the vertex A of the parabola `y^(2)=4x` with `AB=sqrt(5)` then find the area of triangle ABC.

Text Solution

Verified by Experts

The correct Answer is:
20 sq. units

Let point B have coordinates `(t^(2),2t)`.

`AB=sqrt(5)`
`:." "t^(4)+4t^(2)=5`
`rArr" "(t^(2)-1)(t^(2)+5)=0`
`rArr" "t=pm1`
`:." "B-=(1,2)` (considering point B in first quadrant )
Now, BC subtends right angle at vertex A.
`:." "t t'=-4`
`:." "t'=-4`
So, C has coordinates (16,-8).
`:." " AC=sqrt(256+64)=sqrt(320)`
Therefore, area of triangle ABC
`=(1)/(2)ABxxAC`
`=(1)/(2)sqrt(5)sqrt(320)`
`=(1)/(2)sqrt(1600)=20` sq. units
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    CENGAGE|Exercise Exercise 5.2|17 Videos
  • PARABOLA

    CENGAGE|Exercise Exercise 5.3|7 Videos
  • PARABOLA

    CENGAGE|Exercise Question Bank|21 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE|Exercise Question Bank|19 Videos

Similar Questions

Explore conceptually related problems

If the chord y=mx+c subtends a right angle at the vertex of the parabola y^(2)=4ax thenthe value of c is

If a chord 4y=3x-48 subtends an angle theta at the vertex of the parabola y^(2)=64x then tan theta=

A right-angled triangle ABC is inscribed in parabola y^(2)=4x, where A is the vertex of the parabola and /_BAC=(pi)/(2). If AB=sqrt(5) then find the area of $ABC.

The length of the normal chord which subtends an angle of 90^(@) at the vertex of the parabola y^(2)=4x is

If the normal chord at t on y^(2)=4ax subtends a right angle at vertex then t^(2)=

Statement 1: Normal chord drawn at the point (8,8) of the parabola y^(2)=8x subtends a right angle at the vertex of the parabola.Statement 2: Every chord of the parabola y^(2)=4ax passing through the point (4a,0) subtends a right angle at the vertex of the parabola.

Find the length of the normal chord which subtends an angle of 90^(@) at the vertex of the parabola y^(2)=4x