Home
Class 12
MATHS
Tangent to the parabola y=x^(2)+ax+1 at ...

Tangent to the parabola `y=x^(2)+ax+1` at the point of intersection of the y-axis also touches the circle `x^(2)+y^(2)=r^(2)`. Also, no point of the parabola is below the x-axis.
The minimum area bounded by the tangent and the coordinate axes is

A

1

B

`1//3`

C

`1//2`

D

`1//4`

Text Solution

Verified by Experts

The correct Answer is:
D

(4) The equation of tangent is y=ax+1.
The intercepts are `-1//a` and 1.
Therefore, the area of the triangle bounded by tangent and the axes is
`(1)/(2)|-(1)/(a)*|=(1)/(2|a|)`
It is minimum when a=2. Therefore,
Minimum area `=(1)/(4)`
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    CENGAGE|Exercise Exercise (Matrix)|4 Videos
  • PARABOLA

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • PARABOLA

    CENGAGE|Exercise Exercise (Multiple)|26 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE|Exercise Question Bank|19 Videos

Similar Questions

Explore conceptually related problems

Tangent to the parabola y=x^(2)+ax+1 at the point of intersection of the y-axis also touches the circle x^(2)+y^(2)=r^(2) . Also, no point of the parabola is below the x-axis. The slope of the tangents when the radius of the circle is maximum is

Tangent to the parabola y=x^(2)+ax+1 at the point of intersection of the y-axis also touches the circle x^(2)+y^(2)=r^(2) . Also, no point of the parabola is below the x-axis. The slope of the tangents when the radius of the circle is maximum is

Tangent to the parabola y=x^(2)+ax+1 at the point of intersection of the y-axis also touches the circle x^(2)+y^(2)=r^(2) . Also, no point of the parabola is below the x-axis. The radius of circle when a attains its maximum value is

Tangent to the parabola y=x^(2)+ax+1 at the point of intersection of the y-axis also touches the circle x^(2)+y^(2)=r^(2) . Also, no point of the parabola is below the x-axis. The radius of circle when a attains its maximum value is

y=x is tangent to the parabola y=ax^(2)+c . If (1,1) is the point of contact, then a is

y=x is tangent to the parabola y=ax^(2)+c . If (1,1) is the point of contact, then a is

y=x is tangent to the parabola y=ax^(2)+c . If c=2, then the point of contact is

y=x is tangent to the parabola y=ax^(2)+c . If c=2, then the point of contact is

Tangent is drawn at the point (-1,1) on the hyperbola 3x^2-4y^2+1=0 . The area bounded by the tangent and the coordinates axes is

The equation of the common tangent touching the circle (x-3)^(2)+y^(2)=9 and the parabola y^(2)=4x below the x-axis is

CENGAGE-PARABOLA-Exercise (Comprehension)
  1. y^(2)=4xandy^(2)=-8(x-a) intersect at points A and C. Points O(0,0), A...

    Text Solution

    |

  2. y^(2)=4xandy^(2)=-8(x-a) intersect at points A and C. Points O(0,0), A...

    Text Solution

    |

  3. y^(2)=4xandy^(2)=-8(x-a) intersect at points A and C. Points O(0,0), A...

    Text Solution

    |

  4. PQ is the double ordinate of the parabola y^(2)=4x which passes throug...

    Text Solution

    |

  5. PQ is the double ordinate of the parabola y^(2)=4x which passes throug...

    Text Solution

    |

  6. PQ is the double ordinate of the parabola y^(2)=4x which passes throug...

    Text Solution

    |

  7. Consider the inequation 9^(x) -a3^(x) - a+ 3 le 0, where a is real p...

    Text Solution

    |

  8. Consider the inequation 9^(x) -a3^(x) - a+ 3 le 0, where a is real p...

    Text Solution

    |

  9. Consider the inequation 9^(x) -a3^(x) - a+ 3 le 0, where a is real p...

    Text Solution

    |

  10. Consider one sides AB of a square ABCD in order on line y=2x-17, and o...

    Text Solution

    |

  11. Consider one sides AB of a square ABCD in order on line y=2x-17, and o...

    Text Solution

    |

  12. Tangent to the parabola y=x^(2)+ax+1 at the point of intersection of t...

    Text Solution

    |

  13. Tangent to the parabola y=x^(2)+ax+1 at the point of intersection of t...

    Text Solution

    |

  14. Tangent to the parabola y=x^(2)+ax+1 at the point of intersection of t...

    Text Solution

    |

  15. The locus of the circumcenter of a variable triangle having sides the ...

    Text Solution

    |

  16. The locus of the circumcenter of a variable triangle having sides the ...

    Text Solution

    |

  17. The locus of the circumcenter of a variable triangle having sides the ...

    Text Solution

    |

  18. y=x is tangent to the parabola y=ax^(2)+c. If (1,1) is the point of ...

    Text Solution

    |

  19. y=x is tangent to the parabola y=ax^(2)+c. If c=2, then the point of...

    Text Solution

    |

  20. Consider the parabola whose focus is at (0,0) and tangent at vertex is...

    Text Solution

    |