Home
Class 11
MATHS
If the vertices A,B,C of a triangle ABC ...

If the vertices A,B,C of a triangle ABC are `(1,2,3), (-1,0,0) , (0,1,2)` , respectively, then find `angleABC`.

A

`cos^(-1)(10/sqrt52)`

B

`cos^(-1)(10/sqrt102)`

C

`cos^(-1)(10/sqrt103)`

D

`cos^(-1)(5/sqrt102)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle \( \angle ABC \) in triangle ABC with vertices \( A(1, 2, 3) \), \( B(-1, 0, 0) \), and \( C(0, 1, 2) \), we will follow these steps: ### Step 1: Find the vectors \( \overrightarrow{BA} \) and \( \overrightarrow{BC} \) 1. **Calculate the vector \( \overrightarrow{BA} \)**: \[ \overrightarrow{BA} = A - B = (1, 2, 3) - (-1, 0, 0) = (1 + 1, 2 - 0, 3 - 0) = (2, 2, 3) \] 2. **Calculate the vector \( \overrightarrow{BC} \)**: \[ \overrightarrow{BC} = C - B = (0, 1, 2) - (-1, 0, 0) = (0 + 1, 1 - 0, 2 - 0) = (1, 1, 2) \] ### Step 2: Compute the dot product \( \overrightarrow{BA} \cdot \overrightarrow{BC} \) \[ \overrightarrow{BA} \cdot \overrightarrow{BC} = (2, 2, 3) \cdot (1, 1, 2) = 2 \cdot 1 + 2 \cdot 1 + 3 \cdot 2 = 2 + 2 + 6 = 10 \] ### Step 3: Find the magnitudes of \( \overrightarrow{BA} \) and \( \overrightarrow{BC} \) 1. **Magnitude of \( \overrightarrow{BA} \)**: \[ |\overrightarrow{BA}| = \sqrt{2^2 + 2^2 + 3^2} = \sqrt{4 + 4 + 9} = \sqrt{17} \] 2. **Magnitude of \( \overrightarrow{BC} \)**: \[ |\overrightarrow{BC}| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] ### Step 4: Use the cosine formula to find \( \angle ABC \) The cosine of the angle \( \theta \) between the two vectors is given by: \[ \cos \theta = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{|\overrightarrow{BA}| \cdot |\overrightarrow{BC}|} \] Substituting the values we found: \[ \cos \theta = \frac{10}{\sqrt{17} \cdot \sqrt{6}} = \frac{10}{\sqrt{102}} \] ### Step 5: Calculate \( \theta \) Now, we can find the angle \( \theta \): \[ \theta = \cos^{-1}\left(\frac{10}{\sqrt{102}}\right) \] ### Final Answer Thus, the angle \( \angle ABC \) is: \[ \angle ABC = \cos^{-1}\left(\frac{10}{\sqrt{102}}\right) \]

To find the angle \( \angle ABC \) in triangle ABC with vertices \( A(1, 2, 3) \), \( B(-1, 0, 0) \), and \( C(0, 1, 2) \), we will follow these steps: ### Step 1: Find the vectors \( \overrightarrow{BA} \) and \( \overrightarrow{BC} \) 1. **Calculate the vector \( \overrightarrow{BA} \)**: \[ \overrightarrow{BA} = A - B = (1, 2, 3) - (-1, 0, 0) = (1 + 1, 2 - 0, 3 - 0) = (2, 2, 3) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1316 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|320 Videos

Similar Questions

Explore conceptually related problems

If the vectors A,B,C of a triangle ABC are (1,2,3),(-1,0,0),(0,1,2), respectively then find /_ABC.

If the position vectors of the vertices a, B and C of a Triangle ABC be (1, 2, 3), (-1, 0, 0) and (0, 1, 2) respectively then find angleABC .

If the vertices A,B,C of /_ABC are (1,2,3),(-1,0,0),(0,1,2) respectively then cos^(2)B is equal to

If the vertices A, B, C of a triangle ABC are (1," "2," "3)," "(1," "0," "0)," "(0," "1," "2) , respectively, then find /_A B C . [/_A B C is the angle between the vectors vec( B A) and vec (B C) .

The vertices of a triangle ABC are A (2,3,1) , B(-2, 2,0), and C(0,1,-1). What is the cosine of angle ABC ?

The vertices of a triangle ABC are A (1,-2, 2), B (1, 4, 0) and C (-4, 1, 1) respectively. If M be the foot of perpendicular drawn from B on AC, then vec BM is

The vertices of a triangle ABC are A(0,0),B(2,-1) and C(9,2). Evaluate cos B

The vertices of a triangle ABC are A(0, 0), B(2, -1) and C(9, 2) , find cos B .