Home
Class 11
MATHS
Let veca vecb and vecc be pairwise mutua...

Let `veca vecb and vecc` be pairwise mutually perpendicular vectors, such that `|veca|=1, |vecb|=2, |vecc| = 2`, the find the length of ` veca +vecb + vecc`.

Text Solution

Verified by Experts

`|veca+vecb+vecc|^(2)=(veca+vecb+vecc).(veca+vecb+vecc)`
`= |veca|^(2)+|vecb|^(2)+|vecc|^(2)+2veca.vecb + 2veca.vecb+2vecb.vecc+2vecc.veca`
`=1+4+4+0+0+0=9`
`Rightarrow |veca+vecb+vecc|=3`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1316 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|320 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non-coplanar mutually perpendicular unit vectors, then [(veca, vecb, vecc)] is

If veca,vecb are vectors perpendicular to each other and |veca|=2, |vecb|=3, vecc xx veca=vecb , then the least value of 2|vecc-veca| is

If veca,vecb,vecc are mutually perpendicular vectors of equal magnitude show that veca+vecb+vecc is equally inclined to veca, vecb and vecc

Let veca, vecb and vecc be three vectors such that |veca|=2, |vecb|=1 and |vecc|=3. If the projection of vecb along veca is double of the projection of vecc along veca and vecb, vecc are perpendicular to each other, then the value of (|veca-vecb+2vecc|^(2))/(2) is equal to

If veca,vecb,vecc are three vectors such that |veca|=2,|vecb|=4,|vecc|=4,vecb.vecc=0,vecb.veca=vecc.veca , then find the value of |veca+veca-vecc|

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

Given vec(a) is perpendicular to vecb+vecc vecb , is perpendicular to vecc+veca and vecc is perpendicular to veca+vecb . If |veca|=1, |vecb|=2, |vecc|=3 , find |veca+vecb+vecc|

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to

If veca, vecb,vecc are three on-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is