Home
Class 11
MATHS
If veca +vecb +vecc=0, |veca|=3,|vecb|=5...

If `veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7` , then find the angle between `veca and vecb`.

Text Solution

Verified by Experts

Given , `veca+vecb+vecc=vec0`
`veca+vecb=-vecc`
`(veca+vecb).(veca+vecb)=(-vecc).(-vecc)`
`or a^(2)+b^(2)+2(veca.vecb)=c^(2)`
` or 9+25+2(veca.vecb) =49`
`or veca.vecb=15//2`
`or ab costheta=15//2or 3.5 costheta= 15//2`
`or costheta=1//2 Rightarrowtheta=pi//3`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1316 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|320 Videos

Similar Questions

Explore conceptually related problems

If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then the angle between veca and vecb is

If veca+vecb+vecc=0, |veca|=3, |vecb|=5, |vecc|=7, then angle between veca and vecb is (A) pi/6 (B) (2pi)/3 (C) (5pi)/3 (D) pi/3

If |veca|=|vecb|=|vecc|and veca+vecb=vecc then find the angle between veca and vecb .

If |veca|+|vecb|=|vecc|and veca+vecb=vecc then find the angle between veca and vecb .

If three unit vectors veca, vecb and vecc " satisfy" veca+vecb+vecc= vec0 . Then find the angle between veca and vecb .

Three vectors veca,vecb,vecc are such that veca xx vecb=4(veca xx vecc) and |veca|=|vecb|= and |vecc|=1/4 . If the angle between vecb and vecc is pi/3 then vecb is

If three vectors veca, vecb,vecc are such that veca ne 0 and veca xx vecb = 2(veca xx vecc),|veca|=|vecc|=1, |vecb|=4 and the angle between vecb and vecc is cos^(-1)(1//4) , then vecb-2vecc= lambda veca where lambda is equal to:

If veca, vecb and vecc are such that [veca vecb vecc] =1, vecc= lambda veca xx vecb , angle between veca and vecb is 2pi//3,|veca|=sqrt2 |vecb|=sqrt3 and |vecc|=1/sqrt3 then the angle between veca and vecb is

If veca,vecb,vecc are unit vectors such that veca is perpendicular to vecb and vecc and |veca+vecb+vecc|=1 then the angle between vecb and vecc is (A) pi/2 (B) pi (C) 0 (D) (2pi)/3