Home
Class 11
MATHS
If the vectors 3vecP+vecq, 5vecP - 3vecq...

If the vectors `3vecP+vecq, 5vecP - 3vecq and 2 vecp+ vecq, 4 vecp - 2vecq` are pairs of mutually perpendicular vectors, the find the angle between vectors `vecp and vecq`.

Text Solution

Verified by Experts

`3 vecp + vecq and 5vecp-3vecq` are perpendicular. thereforem,
`(3vecP +vecq). (5vecp -3vecq)=0`
`15vecp^(2)-3vecq^(2)=4vecp.vecq`
`2vecp +vecq and 4vecp -2vecq` are perpendicular , therefore,
`(2vecp +vecq).(4vecp - 2vecq)=0`
`8vecp^(2)=2vecq^(2)`
`vecq^(2)=4vecp^(2)`
Now, `cos theta= (vecp.vecq)/(|vecp||vecq|)`
Substituting `vecq^(2)=4vecp^(2) "in" (i), 3vecp^(2)=4vecp.vecq`
`cos theta = 3/4.vecp^(2)/(|vecp|2\|vecp|)=3/8`
or ` theta=cos^(-1)""3/8`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1316 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|320 Videos

Similar Questions

Explore conceptually related problems

If vectors 4vecp+vecq, 2 vecp-3vecq and 5vecp-3vecq, 5vecp+3vecq are a pair of mutually perpendicular vectors and if the angle between vecp and vecq is theta , then the value of sin^(2)theta is equal to

What is the angle between (vecP+vecQ) and (vecPxxvecQ)

if vecP +vecQ = vecP -vecQ , then

The resultant of vecP and vecQ is perpendicular to vecP . What is the angle between vecP and vecQ

If vecP.vecQ=PQ then angle between vecP and vecQ is

If |vecP + vecQ|= | vecP| -|vecQ| , the angle between the vectors vecP and vecQ is

if |vecP + vecQ| = |vecP| + |vecQ| , the angle between the vectors vecP and vecQ is

If vecpxxvecq=vecr and vecp.vecq=c , then vecq is

If |vecP + vecQ| = |vecP -vecQ| the angle between vecP and vecQ is

Let vecp and vecq any two othogonal vectors of equal magnitude 4 each. Let veca ,vecb and vecc be any three vectors of lengths 7sqrt15 and 2sqrt33 , mutually perpendicular to each other. Then find the distance of the vector (veca.vecp)vecp+(veca.vecq)vecq+(veca.(vecpxxvecq))(vecpxxvecq)+(vecb.vecp)vecp+(vecb.vecp)vecq+ (vecb.(vecb.vecq))(vecpxxvecq)+(vecc.vecp)vecp+(vecc.vecq)vecq+(vecc.(vecpxxvecq))(vecpxxvecq) from the origin.