Home
Class 11
MATHS
If A ,B ,C ,D are four distinct point in...

If `A ,B ,C ,D` are four distinct point in space such that `A B` is not perpendicular to `C D` and satisfies ` vec A Bdot vec C D=k(| vec A D|^2+| vec B C|^2-| vec A C|^2=| vec B D|^2),` then find the value of `kdot`

Text Solution

Verified by Experts

Let A be the origin, and the position vectors of B,C
and D be `vecb,vecc,vecd`
`vec(AB).vec(CD)=k(|vec(AD)|^(2)+|vec(BC)|^(2)-\|vec(AC)|^(2)-|vec(BD)|^(2))`
or ` (vecb).(vecd - vecc)`
`k = [(vecd)^(2)+(vecc-vecb)^(2)-(vecc)^(2)- (vecd-vecb)^(2)]`
`or vecb.vecd-vecc=k (-2vecb.vecc+ 2vecb .,vecd)`
or k 1/2
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.2|15 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise 2.3|18 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1316 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|320 Videos

Similar Questions

Explore conceptually related problems

If A,B,C,D are four distinct point in space such that AB is not perpendicular to CD and satisfies vec Adot BCD=k(|vec AD|^(2)+|vec BC|^(2)-|vec AC|^(2)-|vec BD|^(2):) then find the value of k

A B C D isa parallelogram with A C a n d B D as diagonals. Then, vec A C- vec B D= 4 vec A B b. 3 vec A B c. 2 vec A B d. vec A B

The vector component of vec b perpendicular to vec a is ( vec bdot vec c) vec a b. ( vec axx( vec bxx vec a))/(| vec a|^2) c. vec axx( vec bxx vec a) d. none of these

[vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(BC)|=7, |vec(CD)|=11 and |vec(DA)|=9 . Then find the value of vec(AC)*vec(BD) .

A,B,C and D are four points in a plane with position vectors vec a,vec b,vec c and vec d, respectively,such that (vec a-vec d)*(vec b-vec c)=(vec b-vec d)*(vec c-vec a)=0 Then point D is the of triangle ABC

vec a, vec b, vec c, dare any four vectors then (vec a xxvec b) xx (vec c xxvec d) is a vector Perpendicular to vec a, vec b, vec c, vec d

If vec a , vec b , vec c and vec d are the position vectors of points A, B, C, D such that no three of them are collinear and vec a + vec c = vec b + vec d , then ABCD is a

If (vec a-vec b) * (vec a + vec b) = 0, then (a) vec a and vec b are perpendicular (b) vec a and vec b are parallel (c) | vec a | = | vec b | (d) vec a = 2vec b

If vector vec x satisfying vec x xxvec a+(vec x*vec b)vec c=vec d is given vec x=lambdavec a+vec a xx(vec a xx(vec d xxvec c))/((vec a*vec c)|vec a|^(2)), then find the value of lambda.