Home
Class 12
MATHS
Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+...

Let ` vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot]` denotes the greatest integer function. Then the vectors ` vecf(5/4)a n df(t),0lttlti` are(a) parallel to each other(b) perpendicular(c) inclined at `cos^(-1)2 (sqrt(7(1-t^2)))` (d)inclined at `cos^(-1)((8+t)/sqrt (1+t^2))`;

Promotional Banner

Similar Questions

Explore conceptually related problems

let vec f(t)=[t]hat i-(t-[t])hat j+[t+1]hat k be a vector.where [.] is a greatest integer function if f((5)/(4)) and hat i+lambdahat j+muhat k are parallel vectors then (lambda,mu)

Derivative of sin^(-1)((t)/(sqrt(1+t^(2)))) with respect to cos^(-1)((1)/(sqrt(1+t^(2))) is

If z=x+3i, then the value of int[arg|(z-t)/(z-t)|]dx, (where [.] denotes the greatest integer function and t=sqrt(-1), is

Find (dy)/(dx), when x=cos^(-1)(1)/(sqrt(1+t^(2))) and y=sin^(-1)(t)/(sqrt(1+t^(2))),t in R

Find (dy)/(dx), when x=(cos^(-1)1)/(sqrt(1+t^(2))) and y=(sin^(-1)t)/(sqrt(1+t^(2))),t in R

Derivative of cos^(-1)[(1)/(sqrt(t^(2)+1)]w.r.tsin^(-1)[t/(sqrt(t^(2)+1))] is

Differentiate w.r.t. as indicated : cos^(-1)(1/sqrt(1+x^(2)))" w.r.t. "tan^(-1)x

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

If x=cos ^(-1) (4t^(3) -3t) ,y =tan ^(-1)((sqrt( 1-t^(2)))/( t)),then (dy)/(dx)=